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ABSTRACT Translation is a key step in the regulation of gene expression and one
of the most energy-consuming processes in the cell. In response to various stimuli,
multiple signaling pathways converge on the translational machinery to regulate its
function. To date, the roles of phosphoinositide 3-kinase (PI3K)/AKT and the mitogen-
activated protein kinase (MAPK) pathways in the regulation of translation are among
the best understood. Both pathways engage the mechanistic target of rapamycin
(mTOR) to regulate a variety of components of the translational machinery.
While these pathways regulate protein synthesis in homeostasis, their dysregula-
tion results in aberrant translation leading to human diseases, including diabe-
tes, neurological disorders, and cancer. Here we review the roles of the PI3K/AKT
and MAPK pathways in the regulation of mRNA translation. We also highlight ad-
ditional signaling mechanisms that have recently emerged as regulators of the
translational apparatus.
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teady-state MRNA levels do not correlate well with the protein composition in the

cell (1, 2), suggesting that posttranscriptional mechanisms of regulation of gene
expression play a major role in shaping proteomes. Translation is a key step in the
regulation of gene expression (reviewed in references 3 and 4) and is energy costly (5,
6). As such, translation is tightly controlled by signaling pathways that sense various
stimuli, including environmental stresses (e.g., heat shock or UV irradiation), extracel-
lular stimuli (e.g., hormones or growth factors), and intracellular cues (e.g., nutrients,
energy status, or amino acids) (4, 7, 8). Here we summarize the current knowledge on
major signaling pathways involved in translational control via phosphorylation of the
components of the translational machinery. In particular, we focus on the mammalian/
mechanistic target of rapamycin (mTOR) and the mitogen-activated protein kinases
(MAPK). Another important pathway in translational control involves eukaryotic initia-
tion factor 2 (elF2) kinases and phosphatases and has been reviewed elsewhere (9, 10).
Components of the translational machinery actively participate in the regulation of
protein synthesis in homeostasis and when dysregulated are thought to contribute to
pathological conditions, including cancer. Hence, the regulation and functional conse-
quences of phosphorylation of the components of the translational machinery are
described in detail below.
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FIG 1 Schematic representation of mTOR signaling to the translational machinery. Growth factors stimulate
mTORC1 signaling by activating receptor tyrosine kinases (RTKs) located at the plasma membrane. Various adaptor
proteins convert these extracellular signals by stimulating the PI3K/AKT and Ras/ERK pathways. Many additional
cues promote mTORCT activation, including glucose and amino acids via small Rag GTPases, which help translocate
mTORC1 to the surface of lysosomes. In turn, insufficient energy resources (energy stress) and hypoxia inactivate
mTORC1 via the LKB1/AMPK pathway and REDD1, respectively. mTORC2 also responds to agonists that stimulate
the production of phosphatidylinositol-3,4,5-triphosphate (PIP3) and promotes the activity of AGC kinase family
members (PKC, AKT, and SGK) by phosphorylating residues located in their hydrophobic motifs. mMTORCT modu-
lates mMRNA translation by promoting the phosphorylation of downstream substrates, including the 4E-BPs and
S6Ks, the latter having phosphorylation substrates of their own (e.g. elF4B, rpS6, PDCD4, and SKAR). Red T-bars
represent inhibitory signals, whereas black arrows indicate stimulatory signals. P denotes phosphorylation. Abbre-
viations and detailed explanations about this signaling network are provided in the text.

mTOR

mTOR is a conserved Ser/Thr kinase that integrates stimuli including growth factors,
hormones, cellular energy status, and nutrient and oxygen availability (Fig. 1) to adjust
proliferation (increase in cell number) and growth (increase in cell volume/mass) (11).
mTOR stimulates anabolic processes, such as protein and lipid synthesis, and it is found
in two structurally and functionally different complexes: mTOR complexes 1 and 2
(mTORC1 and -2) (12). mTORC1 is composed of mTOR, the scaffolding protein raptor
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TABLE 1 Small-molecule inhibitors of mRNA translation and upstream pathways?

Target Inhibitor(s) Mechanism of action
mTORC1 Rapamycin (sirolimus), everolimus (RADOOT), Rapamycin and the rapalogues bind to FKBP12, which allows the
temsirolimus (CClI-779), ridaforolimus formation of a ternary complex with mTOR; the rapamycin-
(AP23573) FKBP12 dimer binds mTOR outside its kinase domain, and it is
believed that this interaction interferes with the binding of
mTOR and its substrates
PI3K/mTOR BEZ235 (dactolisib), PI-103, XL765 (voxtalisib), ATP-competitive inhibitors of mTOR and PI3K (multiple isoforms)
BGT226, PF-05212384 (gedatolisib)
mTORC1/2 MLNO128 (sapanisertib), AZD8055, Torin1, ATP-competitive inhibitors of mTOR (inhibit either mTORC1 or
PP242 (torkinib), OSI-027, Rapa-Link1 mTORC2) (Rapa-Link1 simultaneously acts as ATP-competitive
and allosteric inhibitor)
PI3K BKM120 (buparlisib), GDC-0941 (pictilisib), Pan-class | PI3K ATP-competitive inhibitors
BAY 80-6946 (copanlisib), ZSTK474,
GDC-0032 (taselisib)
BYL719 (alpelisib), SAR260301, GS-1101 Isoform-specific PI3K ATP-competitive inhibitors
(idelalisib), INCB040093, AMG319, TGR-
1202, IPI-145 (duvelisib), GSK2636771
AKT MK2206 Pleckstrin homology domain-dependent allosteric inhibitor of AKT
that promotes AKT relocalization to the cytoplasm and
prevents its phosphorylation by PDK1 and mTORC2; MK2206 is
more selective toward AKT1/2 than toward AKT3
KRX-0401 (perifosine) Alkyl-phosphocholine that targets cellular membranes and
thereby inhibits AKT activation, as well as many other
membrane-dependent events
GSK690693 ATP-competitive inhibitor of Akt1/2/3
GDC-0068 (ipatasertib) Non-ATP-competitive inhibitor of Akt1/2/3
S6K1 PF-4708671 Inhibits S6K1-dependent phosphorylation of substrates;
mechanism of action is unavailable
LY2584702 ATP-competitive inhibitor of S6K1
MNK eFT508 ATP-competitive inhibitor of MNK1/2
BAY 1143269 MNK1 inhibitor with undisclosed mechanism of action
Cercosporamide, CGP57380, CGP052088 Poorly selective MNK inhibitors that target the ATP-binding
domain of MNK1/2
RSK LJH685 (and related LJI308), SLO101, BI-D1870 ATP-competitive inhibitor of the RSK N-terminal kinase domain
FMK Covalent inhibitor of the C-terminal kinase domain of RSK1/2/4
elF4E LY2275796 Reduction of elF4E expression using antisense oligonucleotide
Cap analogues, including 4Ei-1 Inhibition of elF4E binding to 5’ cap of mRNA
4EGI-1, 4E1RCat, 4E2RCat Inhibition of elF4E-elF4G interaction
elF4A Silvestrol, hippuristanol, pateamine A Inhibition of elF4A helicase activity

aThis table includes selected small-molecule inhibitors that target components of the translation machinery (elF4E and elF4A) or upstream pathways involved in

translational control (mTOR, PI3K, AKT, S6K, MNK, and RSK).

(regulatory-associated protein of TOR), the GTPase B-subunit like protein (GBL) (also
known as mLST8), and deptor (disheveled, Egl-10, pleckstrin [DEP] domain-containing
mTOR-interacting protein) (13, 14). Whereas mLST8 and deptor are found in both
mTORC1 and mTORC2 (13, 14), rictor (rapamycin-insensitive companion of TOR), mSIN1
(mammalian stress-activated protein kinase [SAPK]-interacting protein), and protor
(proline-rich protein 5, also known as PRR5) are specific components of mTORC2
(15-19). In addition to differences in their composition, mMTORCT and mTORC2 govern
distinct cellular processes via phosphorylation of largely nonoverlapping substrates.
Several mTORC1 substrates are involved in the regulation of mRNA translation, includ-
ing the eukaryotic translation initiation factor 4E (elF4E)-binding proteins (4E-BPs),
70-kDa ribosomal S6 kinases (S6Ks) 1 and 2 (reviewed in references 20, 21, and 22), and
LARP1 (La ribonucleoprotein domain family member 1) (23-25). With respect to protein
synthesis, mTORC2 associates with ribosomes (26, 27), and it was found to promote
cotranslational phosphorylation and folding of nascent AKT polypeptides (26).

In addition to functional and structural distinctions, mTORC1 and mTORC2 are
differentially sensitive to rapamycin, which is a naturally occurring allosteric inhibitor of
mTOR (28-30) (Table 1). Together with the immunophilin FKBP12 (FK506-binding
protein of 12 kDa), rapamycin associates with the FRB (FKBP12-rapamycin-binding)
domain of mTOR (31). These studies led to the alternative conclusion that the
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rapamycin-FKBP12 complex prevents binding of mTORC1 to its substrates by steric
hindrance via reduction in the size of the active-site cleft of mTOR. This steric hindrance
model is consistent with the differential sensitivity of mMTORC1 substrates to rapamycin.
For instance, under most conditions tested, rapamycin potently suppresses S6K phos-
phorylation whereas it has only a marginal effect on 4E-BP phosphorylation levels (32).
These differences may lie in the intrinsic capacity of particular phosphorylation sites to
serve as mTORC1 substrates, which was shown to determine their sensitivity to
modulators of the pathway, such as rapamycin (24, 33). Unlike mTORC1, mTORC2
appears to be much less sensitive to rapamycin, at least under conditions wherein
rapamycin has been applied for less than 12 h in cell culture. These findings paved the
way for the identification of a second generation of mTOR inhibitors that target its
catalytic site, irrespective of whether mTOR is found in mTORC1 or mTORC2 (28) (Table
1). Many of these compounds are currently being tested in clinical trials in oncology
(34). Rapa-Link1 is a third-generation inhibitor that simultaneously acts as an allosteric
inhibitor and targets the active site of mTOR (35). Notably, Rapa-Link1 is effective
against tumor cells which harbor mTOR mutations that render them resistant to
rapalogs and active-site mTOR inhibitors (35) and has shown promising results in
preclinical cancer models (36).

REGULATION OF mTORC1 BY HORMONES AND GROWTH FACTORS

Hormones and growth factors, including insulin and insulin-like growth factor (IGF),
stimulate receptor tyrosine kinases (RTKs), such as insulin receptor or IGF receptor, and
activate phosphoinositide 3-kinase (PI3K) via associated adaptor molecules (e.g., IRS-1
and -2). PI3K generates phosphatidylinositol-3,4,5-trisphosphate (PIP;) from phospha-
tidylinositol 4,5-bisphosphate (PIP,) (reviewed in reference 37). Conversely, PIP; is
hydrolyzed to PIP, by PTEN (phosphatase and tensin homologue), which thus acts as
a negative regulator of PI3K (38). PIP; recruits phosphoinositide-dependent kinase 1
(PDK1) and AKT to the plasma membrane (Fig. 1), where PDK1 activates AKT by
phosphorylating a residue localized in its activation loop (Thr308 in human AKT1)
(reviewed in reference 39). mMTORC2 phosphorylates the hydrophobic motif of AKT
(Ser473 in human AKT1) (40), which increases AKT activity toward a subset of substrates
(16, 41). Tuberous sclerosis complex (TSC), a negative regulator of mTOR, consists of the
TSC1 scaffolding protein and TSC2, which is a GTPase-activating protein (GAP) toward
Rheb (Ras homologue enriched in brain) (42). TSC stimulates hydrolysis of Rheb-GTP to
the inactive Rheb-GDP form (43, 44). In addition to TSC1 and TSC2, TBC1D7 (Tre2-Bub2-
Cdc16-1 domain family member 7) acts as a third component of TSC (45). Rheb is a
small GTPase that stimulates mTORC1 in its active, GTP-bound form (46). Rheb was
shown to bind to mTOR and cause a global conformational change that allosterically
promotes mTOR activation (47). It was thought that AKT phosphorylates TSC2 and
inhibits its GAP activity, which results in increased Rheb-GTP levels and mTORC1
activation (43, 44, 48, 49). This model was, however, challenged by the observation that
Rheb recruits TSC to the lysosomal surface, whereby TSC2 maintains Rheb in its inactive
GDP-bound state (50). AKT-mediated phosphorylation of TSC2, which only marginally
reduces its GAP activity, leads to dissociation of TSC from the lysosome, thereby
allowing Rheb-GTP loading and mTORCT1 activation (50).

PRAS40 is a negative regulator of mTORC1 (51-55). AKT phosphorylates PRAS40 (at
Thr246 in humans) and stimulates its dissociation from mTORC1 (53, 54). mTORC1
phosphorylates multiple residues on PRAS40, which indicates that PRAS40 is also an
mTORC1 substrate. PRAS40 contains a TOR signaling (TOS) motif that interacts with
raptor and thus may compete for raptor binding with other mTORC1 substrates (e.g.,
4E-BPs and S6Ks) (56, 57).

In addition to PI3K, growth factors (e.g. epidermal growth factor [EGF]) activate
mTORCT via the Ras GTPase (reviewed in reference 58). Oncogenic Ras signaling has
been linked to elevated mTORC1 activity. Inactivating mutations in the NF1 gene,
whose protein product (neurofibromin) acts as a GAP and inactivates Ras, leads to
mTORC1 hyperactivation (59, 60). Ras signals via the RAF/MEK/ERK axis to activate
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mTORCT, whereby extracellular signal-regulated kinase (ERK) phosphorylates TSC2 and
raptor directly (61-64) or via the 90-kDa ribosomal S6 kinases (RSKs) (65-68).

REGULATION OF mTORC1 BY NUTRIENTS AND METABOLITES

Amino acids stimulate mTORC1 (69, 70). In Saccharomyces cerevisiae, this is achieved
via the Vam6/VPS39-Gtr1/Gtr2 axis. Vam6/VPS39 was shown to promote GTP loading
onto the Gtr1 GTPase, which is a subunit of the vacuolar-membrane-associated EGO
complex that associates with TORC1, resulting in its activation (71, 72). RagA/B and
RagC/D are mammalian orthologues of Gtr1 and Gtr2, respectively (73, 74). RagA or
RagB forms heterodimers with RagC or RagD, and their activity is controlled by the
ragulator (75), which anchors Rags to the lysosome (76). Ragulator, or LAMTOR (late
endosomal/lysosomal adaptor and MAPK and mTOR activator), is a pentameric complex
consisting of p18, p14, MP1 (MEK binding partner 1), HBXIP (hepatitis B virus
X-interacting protein), and C7orf59, which are also known as LAMTOR1 to -5. In addition
to mTOR, LAMTOR2 (p14) and LAMTOR3 (MP1) are also implicated in MEK1 and ERK1/2
activation (77). In their active form, wherein RagA/B and RagC/D are GTP and GDP
loaded, respectively, Rag GTPases recruit mTORC1 to the lysosomal surface, which
facilitates mTORC1 activation by Rheb (78, 79). p62 interacts with raptor to stimulate
mTORC1-Rag association on the lysosomes (80). GAP activity toward Rags 1 (GATOR1)
is a heterotrimeric complex comprising of Nprl3, Nprl2, and DEPDC5, which acts as a
RagA/B GAP and inhibits mTORC1 (81). GATOR2 inhibits GATOR1 via suppression of
DEPDCS5. Different amino acids activate mTORC1 via distinct pathways. SLC38A9, a
lysosomal membrane-associated protein, and the cellular arginine sensor for mTORC1
complex 1/2 (CASTOR1/2) activate mTORC1 in response to arginine (82-84). The
p53-inducible proteins sestrin1 and -2 mediate the effects of leucine on mTORC1
signaling (85). Akin to CASTOR1/2, sestrins bind to GATOR2 and suppress mTORC1
signaling. Addition of leucine leads to dissociation of sestrin-GATOR2 complexes,
leading to mTORC1 activation (86). During amino acid starvation, GCN2 upregulates
ATF4 and increases the expression of sestrin2, which correlates with mTORC1 inhibition
(87). The transport of leucine, arginine, and glutamine into the cell also plays a role in
mTORCT regulation (88). For instance, cellular uptake of glutamine by ASCT2 and its
subsequent rapid efflux by obligatory exchange with essential amino acids (e.g.,
leucine) by LAT1/2 transporters are required for mTORC1 activation (89).

mTOR activity is also controlled by metabolic intermediates. Isocitrate dehydroge-
nases 1 and 2 (IDH1/2) mutations in cancer (90) result in accumulation of p-2-
hydroxyglutarate (p-2HG) (91). It was initially reported that p-2HG suppresses mTORC1
by binding to ATP5B and interfering with ATP production (92). mTOR, however, appears
to be frequently activated in brain cancers harboring IDH1 or IDH2 mutations (91, 93).
Consistent with this, p-2HG was recently shown to positively regulate mTOR (94, 95), in
part by inhibiting KDM4A, an aKG-dependent enzyme of the Jumonji family of lysine
demethylases (94). KDM4A negatively regulates mTORC1 and mTORC2 via associating
with deptor (an inhibitor of mTORC1 and mTORC2) and precluding its targeting for
degradation by SCFATP (94). Modulation of mTOR activity by intermediate metabolites
suggests the presence of regulatory feedback loops whereby mTOR activity, and thus
the protein synthesis rate, is adjusted to the flux of specific metabolic pathways to
maintain energy homeostasis.

REGULATION OF mTORC1 BY ENERGY STATUS AND OXYGEN AVAILABILITY
Alterations in cellular energetics are sensed by the AMP-activated protein kinase
(AMPK) (96). AMPK is a heterotrimeric Ser/Thr kinase that contains a catalytic « and
regulatory /vy subunits (97, 98). Increased intracellular AMP/ATP and ADP/ATP ratios
coincide with increased AMP or ADP binding to the AMPK <y subunit, which stimulates
phosphorylation of the « subunit (on Thr172 in human protein) by serine/threonine
kinase 11 (STK11/LKB1) (98). Glucose serves as a major energy source, and reductions
in glucose flux are paralleled by reduced mTORC1 signaling (Fig. 1). Reduction in the
glycolytic intermediate fructose-1,6-bisphosphate results in aldolase-mediated forma-
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tion of a lysosomal-membrane associated complex, comprising AMPK, LKB1, axin,
v-ATPase and ragulator, which leads to AMPK activation (99). AMPK conserves cellular
energy by downregulating anabolic processes, including protein synthesis, which is
mediated via mTORCT1 inhibition (98, 100). AMPK phosphorylates and activates TSC2
(101) and phosphorylates and sequesters raptor in concert with 14-3-3 proteins (102).

Reduction in oxygen hinders ATP production, thereby activating AMPK (100). Hyp-
oxia also inhibits mTORC1 via REDD1 (regulated in development and DNA damage
response 1) (103). REDD1 downregulates mTORC1 by preventing the 14-3-3-TSC2
interaction and stabilizing TSC (104). Hypoxia-inducible proapoptotic protein BNIP3
(BCL2/adenovirus E1B 19-kDa-protein-interacting protein 3) also inhibits mTORC1 by
directly associating with and inhibiting Rheb (105).

How mTORC1 activity is modulated by nutrients and/or alterations in cellular
energetics to adjust protein synthesis rates in vivo is still poorly understood. Indeed, at
the organismal level, nutrients regulate mTORC1 signaling in a fashion that appears
to be significantly more multifarious than was previously expected (reviewed in
reference 11).

REGULATION OF mTOR BY PHOSPHORYLATION

Within its kinase domain, mTOR contains two phosphoacceptor sites (Ser2159 and
Thr2164 in human mTOR) (106) that stimulate mTOR autophosphorylation (on Ser2481
in human protein) (107) and impact cell growth and proliferation (106). Phosphoryla-
tion of Ser2159 was recently shown to be mediated by the innate immune kinase
TANK-binding kinase 1 (TBK1) (108), which activates mTORC1 in response to growth
factors and innate immune agonists. In addition, phosphorylation of mTOR at the
residue located in its HEAT (Huntington, elongation factor 3, PR65/A, TOR) repeat
(Ser1261 in human protein) results in mTOR autophosphorylation and induction of cell
growth (109). Raptor is also phosphorylated by mTOR on a number of residues (e.g.,
Ser863 in human protein), which upregulates mTORC1 activity (110). Some of the
mTOR-dependent sites on raptor overlap those phosphorylated by ERK1/2 (61), sug-
gesting that raptor is an important point of convergence for multiple signaling path-
ways.

mTORC1 SIGNALING TO THE TRANSLATIONAL MACHINERY

The most extensively studied mediators of the effects of mMTORC1 on translation are
4E-BPs and S6Ks (29) (Table 2). More recently, La-related protein 1 (LARP1) emerged as
a likely mediator of the effects of mMTORC1 on translation of 5’-terminal oligopyrimidine
tract (TOP) mRNAs (111, 112) (Fig. 2).

4E-BPS. Most cellular mRNAs are recruited to the ribosome via the 5'-mRNA cap
structure (12). elF4F is a heterotrimeric complex composed of elF4E, elF4G, and elF4A
(113). elF4E acts as the cap-binding subunit, whereas elF4A is an ATP-dependent DEAD
box RNA helicase (12). elF4G is a scaffold that bridges elF4E-elF4A interaction and that
also associates with additional translation factors, including poly(A)-binding protein
(PABP) and elF3 (12, 114, 115). elF4F recruits mRNA to the ribosome via interactions
between elF4E and the cap as well as elF4G and elF3 (12). 4E-BPs (4E-BP1, -2, and -3 in
mammals) are repressors of elF4F complex assembly (4). In their nonphosphorylated
forms, 4E-BPs interfere with elF4F complex assembly by binding to the site on elF4E
that overlaps with the elF4G-binding motif, which blocks elF4E-elF4G association (116).
mTORCT activation results in hierarchical phosphorylation of 4E-BPs, whereby in human
4E-BP1, phosphorylation of Thr37 and Thr46 precedes phosphorylation of Thr70 and
Ser65 (117-119). Phosphorylation of 4E-BPs facilitates their dissociation from elF4E,
which allows elF4E-elF4G interaction and elF4F complex assembly (116, 118, 119) (Fig.
2). 4E-BPs are recruited to mTORC1 via raptor, which is mediated by the C-terminal TOS
motif (FEMDI) (57). In mammals, 4E-BPs appear to chiefly mediate the effects of
mTORC1 on proliferation, while S6Ks act as major effectors of mTORC1 on cell size
(120-122). In contrast, in phylogenetically lower species, including Drosophila melano-
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TABLE 2 Phosphorylation sites in human translation factors and associated proteins, regulatory kinases, and functional consequences of
the phosphorylation®

Protein Phosphorylation site(s)® (reference) [main kinase(s)] Biological function(s) (reference[s])
4E-BP1 Thr37 (317), Thr46 (317) [mTORC1 (117), GSK3 (126)] Priming sites (118, 119, 116)
Ser65 (317) [IMTORC1 (117)], Thr70 (317) [mnTORC1?/CDK17?] Dissociation from elF4E (118, 119, 116)
Ser83 (129) [CDK17], Ser85 (318) [?], Ser94 (319) [ATM?], Unknown
Ser101 (320) [?], Ser112 (321) [CK2A1 (320)]
4E-BP2 Thr37 (322), Thr46 (322) [nTORC1] Priming sites (by analogy with 4E-BP1)
Ser65 [MTORC1], Thr70 [mTORC1?/CDK17] Dissociation from elF4E (by analogy with 4E-BP1)
elF4E Ser209 (243) [MNK1/2 (245)] Unknown (244, 245), increases oncogenic activity and
promotes translation of a subset of mRNAs (e.g.,
Mcl-1, MMPs, CCLs) (252)
elF4Gl Ser1185 [PKCa (323), TBK1? (324)] Modulates MNK binding (323)
Ser1106, Ser1147, Ser1194 [mTORC1] (184) Stimulation of translation of mRNAs containing uORFs
(227) ()
Ser896 [Pak2] (310) Inhibition of cap-dependent translation (310)
Ser1231 (325) [CDK17?] Inhibition of elF4A/mRNA binding? (325)
elF2a Ser52 (326) [HRI, PKR, GCN2, PERK (reviewed in reference 4)] Stabilizes the elF2/GDP/elF2B complex, thus preventing
recycling of elF2 (reviewed in reference 4)
elF2B S2, S67 [CK2 (327), mTORC1? (232)] Stimulates translation and proliferation (327); stimulates
elF2a dephosphorylation (232)
rpS6 Ser235 (328) and Ser236 [S6K1/2, RSK (147)], Ser240, Ser244, Unknown (329, 330, 122, 147), global translation rates
and Ser247 [S6K1/2] increased in MEFs expressing a nonphosphorylatable
form of rpS6 (148)
PDCD4 Ser67 [S6K1/2, AKT (163, 165)], Ser71 [?], Ser76 [RSK (331, Degradation by the ubiquitin-proteasome system and
164)], Ser94 [?], Ser457 [S6K1/2, AKT (163, 165), RSK (164), subsequent activation of elF4A (163, 164, 165)
PLK1? (332)]
elF4B Ser406 (172) [?], Ser422 [S6K1/2 (170), AKT (172), RSK (171)], Increases binding to elF3 (173, 171), affects translation
Ser422 [MELK? (333)] and proliferation (170)
elF4H Tyr12 (334), Tyrd5 (334), Tyr101 (334), Ser193 (334) [7] Unknown
elF2Be Ser540 [GSK3] (335) Inhibits recycling of elF2 (335)
Ser544 [DYRK] (336) Priming site for GSK3 (336)
Ser717/718 [CK2] (337) Facilitates elF2 binding (337)
elF3 Subunit? [S6K1/2 (175)] Paip1-elF3 interaction (175)
elF3b: Ser83 (338), Ser85 (338), Ser125 (338) [7] Unknown
elF3c: Ser39 (339), Ser166 (338), Thr524 (338), Ser909 (340) [?] Unknown
elF3f: Serde6, Thr119 [CDK11] (341, 311) Regulation of protein synthesis and apoptosis (341, 311)
elF3g: Thr41 (175), Ser42 (175) [?] Unknown
elF3h: Ser183 (342) [7] Increased oncogenic activity (342)
elF3i: Tyr445 (334) [7] Unknown
elF1 Tyr30 (334) [7] Unknown
Tyr72 (343) [7] Stimulation of mRNA translation (343)
elF5 Ser389, Ser390 [CK2] (344) Promotes cell cycle progression (344)
elF5B Ser107 (338), Ser113 (338), S135 (338), S137 (340), S164 (338), Unknown
S$182 (338), S183 (340), S186 (338), S190 (338), S214 (345),
S1168 (338) [?]
elF6 Ser174/175 [CK1] (346) Nucleocytoplasmic shuttling (346)
Ser235 [PKCpII] (347) Dissociation of elF6 from the 60S, 80S assembly (347)
eEF1A1 Thr432 [PKCS] (348) Activation (?) (348)
Ser21 (349) [BRAF?] Apoptosis (349)
Ser300 [TBR-1] (350) Inhibition of mRNA translation (350)
eEF1A2 Ser205, Ser358 [JNK (351)] Degradation of newly synthesized polypeptides (351)
eEF2 Thr56 [eEF2K] (352) Inhibits binding to the ribosome (353)
eEF2K Ser78 (157) [mTOR?] Inhibits CaM binding (157)

Ser359 (155) [SAPK/p3867]
Ser366 [S6K1, RSK] (150)
Ser398 [AMPK] (354)
Ser500 [PKA] (355)

Inhibition (?) (155)

Inhibition (150)

Activation (354)

Induces Ca?*-independent activity (355)

aThis table includes selected phosphoacceptor sites identified in large-scale mass spectrometry-based experiments which await functional characterization (e.g., elF5B;
unknown kinase/function is indicated by a question mark), as well as phosphorylation sites with established role in translational control (e.g., 4E-BPs and elF2a).
Further information on the as-of-yet functionally noncharacterized phosphorylated residues of the components of the translational apparatus can be found in the
PhosphoSitePlus (www.phosphosite.org) or UniProt (www.uniprot.org) database. In the case of elF4G1, the phosphorylation sites indicated are corrected from the
published article (Ser1108, Ser1148, and Ser1192). Abbreviations: CDK, cyclin-dependent kinase; PKC, protein kinase C; Pak2, p21-activated kinase 2; HRI, heme-
regulated elF2a kinase; PKR, double-stranded-RNA-activated elF2a kinase; GCN2, general control nonrepressed elF2« kinase; PERK, double-stranded-RNA-activated
protein kinase-like ER kinase; DYRK, dual-specificity tyrosine phosphorylation-regulated kinase; CK2, protein kinase CK2 (formerly known as casein kinase II); TBR-I,
transforming growth factor B1 (TGF-B1) receptor; eEF2K, eukaryotic translation elongation factor 2 kinase; PKA, protein kinase A; SAPK, stress-activated protein kinase;
TBK1, TANK-binding kinase 1, PLK1, polo-like kinase 1, MELK, maternal embryonic leucine zipper kinase; Paip1, polyadenylate-binding protein-interacting protein 1.
Additional abbreviations are provided in the text.
bAmino acid numbering is based on human proteins.
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FIG 2 The mTOR and MAPK pathways affect the translatome by modulating the expression of specific
subsets of mRNAs. Phosphorylation of the 4E-BPs by mTOR leads to their dissociation from elF4E, which
stimulates the interaction of elF4E with elF4G and assembly of the elF4F complex. mTOR also promotes
S6K-dependent phosphorylation of PDCD4 and elF4B, which in turn regulate elF4A levels and activity,
respectively. elF4E is the most limiting subunit of the elF4F complex and is thus critical for the
recruitment of elF4A to the mRNA and unwinding of the secondary structure of its 5'UTR during
ribosome scanning toward the initiation codon. The Ras/ERK pathway also regulates elF4A activity by
promoting RSK-dependent phosphorylation of elF4B and PDCDA4. elF4E activity is also regulated by MAPK
pathways by direct phosphorylation of elF4E by the MNK protein kinases. Although the elF4F complex
regulates the translatome at a global scale, each subunit also appears to modulate the translation of
specific subsets of transcripts. For instance, overexpression of elF4E appears to selectively affect trans-
lation of MRNAs encoding proteins involved in tumor initiation and maintenance (e.g., cyclins, vascular
endothelial growth factor [VEGF], and BCL-xL). Phosphorylation of elF4E also seems to bolster the
translation of mRNAs encoding proteins involved in tumor dissemination (e.g., SNAIL and MMP3). Various
stresses activate elF2 kinases (PERK, PKR, GCN2, and HRI) that phosphorylate elF2 (alpha subunit), which
reduces global protein synthesis but promotes the translation of mMRNAs containing upstream open
reading frames (UORFs), such as those encoding ATF4, CHOP, and GADD34. elF4A promotes the
translation of mRNAs with G/C-rich 5" UTR sequences, such as the 12-nucleotide guanine quartet (CGG),
motif, which can form RNA G-quadruplex structures. Red T-bars represent inhibitory signals, whereas
black arrows indicate stimulatory signals. P denotes phosphorylation. Abbreviations and detailed expla-
nations about this signaling network are provided in the text.

gaster, which express a single 4E-BP protein (d4E-BP), 4E-BP regulates both proliferation
and cell size (123).

Although mTORC1 acts as a major 4E-BP kinase, additional kinases may also be
involved (reviewed in reference 124). For instance, Ser/Thr kinase Pim-2 phosphorylates
4E-BPs (including the mTORC1-sensitive Ser65 site) in a number of leukemia and
lymphoma cells (125). In addition, glycogen synthase kinase 38 (GSK3 ) phosphorylates
4E-BP1 at Thr37/Thr46 (126). Casein kinase 1e (CK1e) phosphorylates 4E-BP1 (residues
Thr41 and Thr50 in humans), which appears to be required for the phosphorylation of
mTORC1-regulated sites and coincides with 4E-BP1 dissociation from elF4E (127).
Finally, cyclin-dependent kinase 1 (CDK1) phosphorylates 4E-BP1 at Thr70 and Ser83
during mitosis (128, 129). The mechanisms governing these alternative pathways of
4E-BP phosphorylation are not well established, and little is known regarding their
physiological relevance.

S6Ks. In addition to the 4E-BPs, S6Ks also mediate effects of mTOR on protein
synthesis (7, 22, 29, 130) (Fig. 2). There are two S6Ks in mammals (S6K1 and S6K2 [also
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referred to as S6Ka and S6KpBI]) (131). Notwithstanding that two separate genes
(RPS6KBT and RPS6KB2) encode S6K1 and S6K2, the enzymes are highly homologous
(reviewed in reference 132). Both mammalian S6Ks exist in distinct isoforms (p70- and
p85-S6K1 and p54- and p56-S6K2), which are produced by alternative selection of
translational start sites (133, 134). A third isoform of S6K1 (p31-S6K1) has also been
described, which is generated via alternative splicing and results in a truncated kinase
domain (135). p31-S6K1 plays an important role in cancer (136, 137). S6Ks have an
evolutionarily conserved role in the regulation of cellular and organismal size. In
mammals, S6Ks act as major effectors of mTORC1 on cell growth (138), whereas their
effect on proliferation appears to be less pronounced (120-122). S6K1/S6K2 knockout
mice are ~15 to 20% smaller than their wild-type counterparts and suffer from
perinatal lethality (122), which is consistent with the increased death of flies at the larval
stage upon dS6K ablation (139). Size reduction is observed in S6K1 knockout mice (140)
but not S6K2 knockout mice, which exhibit a modest increase in size (122). A similar
reduction in cell size was observed in Drosophila upon ablation of its single S6K isoform
(139). These findings suggest that S6K1 and S6K2 may play some nonoverlapping roles.
For instance, S6K2, but not S6K1, has been implicated in the regulation of cell
proliferation in cancer (141). S6K1 and S6K2 also play distinct roles in microRNA
(miRNA) biogenesis (142). Finally, protein kinase C (PKC) has been shown to phosphor-
ylate S6K2 (on S486 in humans) but not S6K1 (143).

The first step in activation of S6Ks is phosphorylation of several residues located in
the C-terminal pseudosubstrate domain (144, 145). This is followed by phosphorylation
of Thr residues within their activation loop (Thr229 in human p70-S6K1) and hydro-
phobic motif (Thr389 in human p70-S6K1) by PDK1 and mTORC1, respectively (re-
viewed in references 132 and 131). S6Ks are recruited to mTORC1 by raptor via their
TOS motif (FDIDL in human S6Ks) (56, 57). In addition, GSK3 also phosphorylates S6Ks
in their turn motif (Ser371 in human S6K1), which is thought to contribute to S6K
activation (146).

The S6Ks regulate the phosphorylation of multiple components of the translational
machinery (Fig. 1 and 2). S6Ks phosphorylate five residues in the C terminus of rpS6
(Ser235, Ser236, Ser240, Ser244, and Ser247 in humans). In turn, RSKs phosphorylate
only Ser235 and Ser236 (122, 147) (Fig. 2 and 3). Expression of a nonphosphorylatable
rpS6 mutant mirrors growth defects observed in S6K1/2 knockout mice (148), thereby
indicating that the phosphorylation of rpSé is involved in the regulation of cell growth.
Expression of the nonphosphorylatable rpS6 mutant, however, moderately upregulates
overall protein synthesis, whereas loss of S6Ks has only a marginal effect on global
translation (122, 148). Finally, the S6K/rpS6 axis has been implicated in ribosome
biogenesis (149).

S6Ks also phosphorylate eukaryotic elongation factor 2 (eEF2) kinase (eEF2K) (Ser366
in humans) (150) (Fig. 2). eEF2K belongs to a small group of proteins containing an
a-kinase catalytic domain, and it functions as a negative regulator of protein synthesis
through its ability to phosphorylate and inhibit eEF2 (151). eEF2K phosphorylates eEF2
(Thr56 in humans), which is a GTPase that promotes translocation of peptidyl-tRNA
from the A site to the P site of the ribosome (152, 153). eEF2K is inactivated by insulin
and other growth factors, which increase eEF2 function and elongation rates (150). This
is mediated by the mTORC1/S6K axis, which phosphorylates eEF2K (at Ser366 in
humans). While this site is also phosphorylated by RSK (150), ERK1/2 phosphorylates
eEF2K at Ser359 (in humans) (154) and inhibits its function (155) (Fig. 3). Moreover,
mTORC1 has been suggested to interfere with calmodulin-eEF2K binding by directly
phosphorylating eEF2K (at Ser78 and Ser396 in humans) (150, 154). AMPK activates
eEF2K via mTORC1 inhibition (156) and direct phosphorylation (at Ser398 in hu-
mans) (157). Understanding of the functional consequences of eEF2K phosphory-
lation is still incomplete. For instance, it has been shown that disruption of eEF2K
mitigates the antineoplastic effects of mTORC1 inhibition, suggesting tumor-
suppressive properties of eEF2K (158) (Fig. 2). Cell culture and xenograft experiments
using a variety of cancer cell lines, however, point out that eEF2K may exhibit tumor-
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FIG 3 Schematic representation of MAPK signaling to the translational machinery. The Ras/ERK and
p38MAPK pathways are activated by a wide range of stimuli, including cytokines, growth factors,
and diverse environmental stresses. While many stimuli activate both MAPK pathways, stress stimuli and
growth factors typically activate the p38MAPK and Ras/ERK signaling, respectively. While Ras/ERK
signaling stimulates the activity of both RSK and MNK, the latter is also responsive to agonists of the
p38MAPK pathway. MNK interacts with elF4G and phosphorylates elF4E on Ser209, a site that increases
its oncogenic potential and facilitates the translation of specific mRNAs. Following activation of the
Ras/ERK pathway, RSK phosphorylates rpS6, elF4B, PDCD4, and eEF2K, which are important regulators of
translation. RSK also modulates mTORC1 signaling by phosphorylating TSC2 and deptor. ERK and RSK
regulate LKB1-dependent and -independent phosphorylation of raptor, resulting in increased mTORC1
signaling. ERK and RSK also collaborate in the regulation of ribosome biogenesis by promoting TIF-1A
phosphorylation. Red T-bars represent inhibitory signals, whereas black arrows indicate stimulatory
signals. P denotes phosphorylation. Abbreviations and detailed explanations about this signaling net-
work are provided in the text.

\ J

protective effects by decreasing energy consumption when nutrients are limiting (151,
159).

Programmed cell death 4 (PDCD4) is a proapoptotic factor that blocks elF4G-elF4A
interaction (160, 161). This represses elF4A activity and results in inhibition of cap-
dependent translation (161, 162). S6Ks phosphorylate PDCD4 (on Ser67 and Ser457 in
humans), which triggers its SCFPTP-dependent degradation (163). AKT and RSK can
also target some of these PDCDA4 sites (164, 165) (Fig. 3). elF4B and elF4H stimulate the
RNA-unwinding activity of elF4A by bolstering its processivity and establishing its
directionality (116, 166-169). Several AGC kinases phosphorylate elF4B on Ser406 (RSK
and S6K) and Ser422 (S6K, AKT, and RSK), which appears to occur in a context-
dependent manner (170-172) (Fig. 3). elF4B stimulates cellular proliferation and sur-
vival, and its phosphorylation correlates with increased translation (171). It was also
implied that elF4B phosphorylation facilitates its association with elF3, which was
proposed to act as a scaffold for mTORC1 and S6K1 (173). S6Ks associate with elF3
via the elF3f subunit, whereby S6K-dependent phosphorylation of elF3 increases
elF3-PABP-interacting protein 1 (Paip1) association, which correlates with upregu-
lated translation (174, 175).

In addition, S6K1 has been suggested to stimulate translation of newly spliced
mRNAs. According to this model, S6K1 is recruited to the exon-junction complex (EJC)
by SKAR (S6K1 Aly/REF-like target) (176). Formation of S6K1-SKAR complexes with the
EJC coincides with the phosphorylation of a number of mRNA-binding proteins, which
is paralleled by increased translational activity of spliced mRNAs (177).
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LARP1. La-related protein 1 (LARP1) is a conserved RNA-binding protein of the La
motif (LAM)-containing factor family (111). LARP1 interacts with raptor and is phos-
phorylated by mTORC1, which is thought to modulate its mRNA-binding activity (23,
25, 178). While mTORC1 phosphorylates LARPT on Ser689 and Thr692, other sites
(Ser770 and Ser979) are phosphorylated by S6K1 and/or AKT (23), suggesting several
layers of LARP1 phosphoregulation (Fig. 2).

LARP1 has been proposed to play a role in modulating stability and/or translation
of TOP mRNAs (25, 178, 179) (Fig. 2). The interaction with TOP mRNAs requires the
LARP1 family-specific DM15 region (180). Recent findings suggest that the DM15 region
plays a role in specialized cap binding of TOP mRNAs (181), which may impede access
of elF4E to the cap. LARP1 was also shown to interact with the poly(A) tail of TOP
transcripts (179), but the region within LARP1 responsible for this interaction remains
unknown.

The exact role of LARP1 in the regulation of TOP mRNAs remains controversial. While
LARP1 was shown to regulate TOP mRNA stability, it has also been described as a
positive or negative regulator of TOP mRNA translation, depending on the context.
Current evidence indicate that LARP1 binding to TOP mRNAs may inhibit their trans-
lation in response to mMTORC1 inhibitors (23, 178) (Table 1). LARP1 may thus serve as a
phosphorylation-sensitive switch that regulates the translation of TOP mRNAs. This
model was recently supported by in vitro evidence using cell-free translation systems
(182). Complementary strategies involving cell type- and organ-specific conditional
knockout of LARP1 in whole animals will also be required in the future. Together, these
approaches should help determine whether LARP1 is the long-sought regulator of TOP
mMRNA translation downstream of mTORC1. A recent study has shown that LARP1 is lost
in 5g— syndrome, which is a macrocytic anemia characterized by defects in ribosome
biogenesis (183).

Additional mTOR targets implicated in translational control. Besides LARP1,
4E-BPs, and S6Ks, mTORC1 directly phosphorylates elF4G at multiple residues (184), but
the functional consequences remain unknown. mTORC1 also increases ribosome bio-
genesis and tRNA synthesis rates. This is mediated chiefly by TIF-IA (185) and the RNA
polymerase Il repressor Maf1, respectively (186-189) (Fig. 1). mTORCT may also pro-
mote MRNA translation by suppressing a selective autophagic pathway for 60S ribo-
somal subunits (i.e., ribophagy) (190, 191), but the specificity of this response in
mammalian cells compared to bulk autophagy remains poorly understood (192).

SELECTIVE TRANSLATION REGULATION BY mTOR

mRNAs exhibit differential translation activity based on their intrinsic features, which
can sometime determine the rate of ribosome attachment (e.g., for mRNAs coding for
a- versus B-globin) (193). This allows selective induction of translation of a subset of
mRNAs in response to a variety of extracellular stimuli and intracellular cues, which is
achieved by modulating the activities of components of the translational machinery by
signaling pathways (Table 2). New technologies, including ribosome and polysome
profiling, enabled investigation of translation on a transcriptome-wide scale (194, 195).
These analyses further corroborated the tenet that translation plays an evolutionarily
conserved role in shaping the proteomes, in particular during acute responses to
stimuli.

TOP mRNAs harbor an extreme 5-terminal oligopyrimidine tract (5'TOP) which is
characterized by a cytosine immediately following the cap followed by 4 to 15
uninterrupted pyrimidines (reviewed in reference 112). TOP mRNAs almost exclusively
encode components of the translational apparatus (reviewed in reference 112). Inhibi-
tion of mTOR signaling leads to a reduction in TOP mRNA translation due to impaired
initiation. Based on the observation that TOP mRNA translation is suppressed upon
amino acid withdrawal, which is paralleled by downregulation of S6K activity and rpS6
phosphorylation, it was proposed that the S6Ks/rpS6 axis promotes TOP mRNA trans-
lation (140, 196, 197). Subsequent studies, however, demonstrated that neither ablation
of S6Ks nor alterations in rpS6 phosphorylation influence TOP mRNA translation (122,
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148, 198). More recently, ribosome profiling studies suggested that TOP mRNA trans-
lation is regulated by 4E-BPs (199). This conclusion was based on the findings that
mTOR inhibitors suppress translation of TOP mRNAs more strongly in wild-type than in
4E-BP1/2 knockout mouse embryonic fibroblasts (MEFs). This was in contrast to previ-
ous findings of relative insensitivity of TOP mRNA translation to changes in elF4E
availability (200). Moreover, physiological stimuli, such as oxygen, growth factors, or
nutrients, alter TOP mRNA translation in an mTOR-dependent but 4E-BP-independent
manner (201). Hence, it appears likely that mTOR-mediated regulation of TOP mRNAs
includes pathways that are independent from the 4E-BPs.

In addition to LARP1, which was described above, T-cell intracellular antigen 1
(TIA-1) and TIA-1-related protein (TIAR) were shown to suppress TOP mRNA translation
specifically upon amino acid withdrawal (202) (Fig. 2). TIA-1 and TIAR are mRNA-binding
proteins that aggregate within stress granules (203), but the role of mTOR in TIA-1/
TIAR-mediated repression of TOP mRNAs remains unclear. These findings highlight the
need to further investigate the mechanisms by which mTOR mediates TOP mRNA
translation. Intriguingly, although mTOR depletion abrogates the effects of physiolog-
ical stimuli on TOP mRNA translation, this is not the case when raptor or rictor is
depleted (204, 205), suggesting that an mTOR complex other than mTORC1 or mTORC2
may be implicated in regulation of TOP mRNA translation.

Ribosome profiling studies suggested that mTOR almost exclusively regulates trans-
lation of mRNAs that harbor TOP or TOP-like motifs (199, 206), although the significance
of the latter motifs has been questioned (207). Comparative analyses of several data
sets derived from such analyses revealed the loss of representation of a large majority
of bona fide non-TOP mRNAs (112). Indeed, polysome profiling studies suggested that,
in addition to TOP mRNAs, alterations in mTOR activity impact non-TOP mRNAs (208).

Non-TOP mRNAs include a large proportion of transcripts whose translation is highly
dependent on changes in 4E-BP activity and/or elF4E levels (209, 210). Changes in
4E-BPs levels and/or phosphorylation dramatically alter translation of a subset of
mRNAs (e.g., IRF7, GAS2, CCND3, ODCI, and VEGFA), while having relatively modest
effects on global protein synthesis (120, 211-213) (Fig. 2). This pool of mRNAs largely
overlaps those whose translation activity is dramatically affected by alterations in elF4E
levels (4, 209, 210, 214). These “elF4E-sensitive mRNAs" are thought to harbor long and
structured 5’ untranslated regions (5'UTRs) that render them critically dependent on
the unwinding activity of the elF4A subunit of the elF4F complex (209, 215-217). The
ability of elF4A to efficiently unwind secondary RNA structures is strongly induced in
the elF4F complex (218, 219), and thus it is thought that recruitment of elF4A to the
elF4F complex by elF4E underpins the observed “elF4E sensitivity” (reviewed in refer-
ences 9 and 4). In contrast, mRNAs with 5'UTRs that are of the optimal length (70 to 150
nucleotides [nt] in mammalian cells) (220), including those encoding housekeeping
proteins (e.g., actins and tubulins), exhibit minimal sensitivity to elF4E (reviewed in
reference 210).

The discrepancy between the ribosome and polysome profiling studies can be
explained by the differences in the technology biases and experimental conditions that
were used (221). NanoCAGE technology, which allows determination of transcription
start sites on a genome-wide scale, confirmed that a large number of non-TOP mRNAs
are mTOR sensitive (222). Among these non-TOP mRNAs, a subclass of transcripts
with exceedingly short 5'UTRs (<50 nt) were also identified as being translationally
regulated via the mTOR/4E-BP/elF4E axis (Fig. 2). The vast majority of these mRNAs
correspond to nuclear genes with mitochondrial functions, including components of
the respiratory chain complexes (e.g., ATP50, ATP5D, UQCC2, and NDUF6) (222). These
transcripts frequently harbor a TISU (translation initiator of short 5’ UTR) element, and
their translation is strongly affected by alterations in elF4E but not elF4A (222, 223).
Mechanisms underlying the translation of TISU mRNAs are still not completely clear, but
they may involve an interaction between elF4G1 and elF1, which facilitates dissociation
of elF4E from the 5'mRNA cap (224), followed by the elF1A-directed association
between the TISU element and RPS3 and RPS10e in the 48S complex and 80S mono-
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some, respectively (225). Collectively, these findings suggest that mTOR regulates
translation of mRNAs with specific 5'UTR features, including a number of non-TOP
mRNAs.

mTORCT can independently regulate each component of the elF4F complex (elF4E
and elF4A via modulating 4E-BP and PDCD4 phosphorylation, respectively, and elF4G
by direct phosphorylation). This suggests that the effects of mTOR on the translatome
may be influenced by factors such as stoichiometry of the elF4F components in the cell
and/or the nature of the stimulus. Indeed, although changes in the levels and/or
activity of the elF4F complex subunits correspond to overlapping changes in the
translatome, there are many notable differences. elF4A and elF4G affect different
transcripts, and these are often distinct from those exhibiting elF4E sensitivity (226-
229). Moreover, mTOR regulates the phosphorylation of elFs other than elF4F compo-
nents that selectively affect translation. For instance, elF4B, which acts as an auxiliary
factor that bolsters elF4A helicase activity, is a substrate of S6Ks that has been
demonstrated to selectively upregulate translation of mRNAs encoding survival and
proliferation-promoting factors, including c-Myc, XIAP Cdc25, ODC, and Bcl-2 (230, 231)
(Fig. 2). elF4A was shown to possess oncogenic properties in T-cell acute lymphoblastic
leukemia, as it was found to be particularly important for the translation of MYC,
NOTCHI1, and MDM2 mRNAs (229). mTOR also seems to collaborate with CK2 in
phosphorylating elF28 (on Ser2 and Ser67 in human protein), which leads to transla-
tional inactivation of upstream open reading frame (UORF)-containing mRNAs (232).
Finally, it has been suggested that mTORC1 can bolster translation of cyclin D3 mRNA
by increasing its elongation rates via the eEF2K/eEF2 axis (158).

Altogether, these findings demonstrate that further studies are warranted to fully
catalogue mTOR-sensitive mRNAs and identify the precise mechanism underpinning
the qualitative and quantitative alterations of the translatome by mTOR.

MAPK SIGNALING TO THE TRANSLATIONAL MACHINERY

The mitogen-activated protein kinases (MAPKs) are Ser/Thr kinases that regulate
many essential processes, including gene expression, mitosis, metabolism, motility,
survival, apoptosis, and differentiation (233). In mammalian cells, three MAPK families,
i.e., ERK1/2, Jun N-terminal protein kinase (JNK), and p38 kinase, have been extensively
characterized (reviewed in references 234, 235, 236, and 237). Each group of MAPKs
function within a module composed of conserved, sequentially acting kinases: a MAPK,
a MAPK kinase (MAPKK), and a MAPKK kinase (MAPKKK) (Fig. 3). The MAPK-activated
protein kinases (MAPKAPKs), one of the many substrates of ERK1/2 and p38, are a family
of Ser/Thr kinases which includes the p90 ribosomal S6 kinases (RSKs) and the MAPK-
interacting kinases (MNKs) (238, 239). While multiple MAPKAPs have been shown to
regulate gene expression, the RSKs and MNKs have been directly implicated in the
regulation of mRNA translation (240, 241) (Fig. 3).

MNKs. In mammals, elF4E is regulated by phosphorylation of a C-terminal residue
(Ser209 in human elF4E) (242, 243) by the MNKs (244, 245) (Fig. 3). There are two MNK
genes in the human genome (MKNKT and MKNK2), each encoding two spliced isoforms
(MNK1a and -b and MNK2a and -b) (reviewed in reference 240). While the longer forms,
MNK1a and MNK2a, are primarily cytoplasmic, MNK1b and MNK2b are equally distrib-
uted between the nucleus and the cytoplasm (246, 247). Although both MNK1a and
MNK2a contain a canonical MAPK-binding motif, their sequences differ slightly such
that MNK1a binds both ERK1/2 and p38 kinases, while MNK2a associates only with
ERK1/2 (245). The basal activity of MNK2a is high relative to that of MNK1a due to its
sustained association with ERK1/2 (248). MNK1a has low basal activity but is responsive
to the ERK1/2 and p38 activation (150, 248). Although MNK1b and MNK2b lack
MAPK-binding motifs, these isoforms were shown to have high and low basal activity,
respectively (247, 249). In mice, however, only MNK1a and MNK2a isoforms have been
identified (reviewed in reference 240).

MNKs are recruited to elF4E through association of their N-terminal regions with the
C-terminal part of elF4G (250). Phosphorylation of elF4E is restricted to metazoans, as
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yeast lacks MNK orthologues. Although studies in Drosophila revealed that elF4E
phosphorylation is required for normal development (251), studies in MNK1/2 double
knockout (DKO) mice or mice in which wild-type elF4E was replaced with a nonphos-
phorylatable mutant (5209A) develop normally (252, 253). elF4E phosphorylation,
however, appears to be important in cancer (reviewed in reference 254). The nonphos-
phorylatable elF4E mutant is less effective in transforming cells than the wild-type
protein, in vitro and in vivo (255, 256). Similarly, mouse embryonic fibroblasts derived
from MNK1/2 DKO animals were found to be resistant to Ras-mediated transformation
(257), suggesting the importance of the MNK/elF4E pathway in tumorigenesis.

MNKs are recruited to elF4E via elF4G (250), and thus, it is likely that elF4E
phosphorylation occurs during or after the elF4F complex assembly. Ser209 is located
near the cap-binding pocket of elF4E, and its phosphorylation was initially predicted to
stabilize elF4E-cap interaction (258, 259). Subsequent studies revealed, however, that
elFAE phosphorylation reduces its cap affinity (260, 261), and depending on the
experimental conditions, elF4E phosphorylation was shown to correlate with increased
(262-265) or decreased (266-268) global mRNA translation rates. Intriguingly, mRNAs
which are sensitive to elF4E level changes do not significantly overlap those whose
translation is altered by changes in the elF4E phosphorylation. Phosphorylated elF4E
appears to stimulate translation of mRNAs (e.g., SNAIT, MMP3, and VIM) encoding
proteins involved in migration and metastasis and/or inflammation (cytokines) (252,
269, 270) (Fig. 2). This suggests that unlike elF4E overexpression, which stimulates
tumor initiation, elF4E phosphorylation facilitates tumor progression by increasing
metastatic potential via selective upregulation of translation of mRNAs encoding
proteins critical for remodeling of the extracellular matrix, epithelial-to-mesenchymal
transition, and inflammation. Given the roles of MNKs in tumorigenesis and the fact
they are dispensable for animal growth and development (271), recently identified
MNK1/2 inhibitors (eFT508 and BAY 1143269) (Table 1) are currently being tested in
phase I/Il clinical trials in patients suffering from hematological malignancies or solid
tumors (272).

RSKs. The RSK family comprises four highly similar members (RSK1, RSK2, RSK3,
and RSK4) that are activated by Ras/MAPK signaling (reviewed in references 241 and
273) (Fig. 3). ERK1/2 interact with a D-type docking motif in the RSK C-terminal region
(274) and promote the phosphorylation of several Ser/Thr residues present in all RSK
isoforms. RSK proteins exist in all vertebrate species, and related orthologues have been
identified in Drosophila and Caenorhabditis elegans but not in yeast. With the exception
of RSK4, all RSK are ubiquitously expressed in developing and adult tissues (275). RSK1,
RSK2, and RSK3 are usually present in the cytoplasm but translocate into the nucleus
in response to stimulation (276, 277). RSK4 does not significantly accumulate in the
nucleus following stimulation of the Ras/MAPK pathway (278). An important feature of
RSK is that it contains two distinct and functional kinase domains. The C-terminal kinase
domain (CTKD), which belongs to the CAMK (Ca2*/calmodulin-dependent protein
kinase), family is responsible for receiving an activating signal from ERK1/2 which is
transmitted to the N-terminal kinase domain (NTKD) that phosphorylates substrates
(279, 280). The NTKD belongs to the AGC family of protein kinases and targets basic
phosphorylation motifs (164), explaining why many RSK substrates are shared with AKT
and S6Ks (273).

Over 30 years ago, RSK was identified as an rpS6 kinase in unfertilized Xenopus laevis
eggs, which suggested that it may regulate translation (281). S6K1 and S6K2 were later
shown to be the predominant rpS6 kinases in somatic cells (282, 283). Subsequent
studies using S6K1~/~ S6K2~/~ cells confirmed these findings but also showed residual
rpS6 phosphorylation by RSK (122). Both RSK1 and RSK2 were found to specifically
phosphorylate rpS6 on Ser235 and Ser236 (147). The functional role of rpS6 phosphor-
ylation is largely unknown (148, 284); however, these results suggest that RSK provides
an mTOR/S6éK-independent input linking MAPK signaling to the potential regulation of
mRNA translation.
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Ras/MAPK signaling impinges on the PI3K/mTOR pathway at various levels to
regulate translation. In addition, RSK directly regulates components of the translation
apparatus (Table 2), such as rpS6 (Ser235/236 in humans) (147), elF4B (Ser422 in
humans) (171), and eEF2K (Ser366 in humans) (150) (Fig. 3). Phosphorylation of elF4B
promotes its interaction with elF3, which correlates with increased translation rates
(171, 173). RSKs and S6Ks regulate elF4B phosphorylation with different kinetics, which
may explain the biphasic pattern of elF4B phosphorylation observed in response to
growth factors (171). RSKs stimulate PDCD4 phosphorylation and degradation (164)
and phosphorylate eEF2K at Ser366 (150), which leads to its inhibition. As was shown
with AKT and S6K (285), RSK-mediated phosphorylation and inhibition of GSK33 (on
Ser9 in humans) (286) may activate elF2B, a key regulator of protein synthesis (287). In
collaboration with ERK1/2, RSKs was suggested to contribute to rRNA synthesis by
phosphorylating TIF-1A (Ser633 and Ser649 in humans, respectively), but these sites do
not appear to lie within RSK consensus phosphorylation sequences (288). Nonetheless,
these phosphorylation events were shown to be dependent on the Ras/MAPK pathway.
Together these data demonstrate that RSKs play a major role in the regulation of mRNA
translation (Fig. 3).

REGULATION OF TRANSLATIONAL MACHINERY BY PHOSPHATASES

In contrast to the extensive literature on the role of protein kinases in the regulation
of translation, the role of protein phosphatases in protein synthesis remains largely
underexplored. As described elsewhere (9, 10), serine/threonine phosphatase com-
plexes containing PPP1R15 family member GADD34 or CReP, in conjunction with
protein phosphatase 1C (PP1C), play a major role in regulation of elF2a phosphoryla-
tion and thus ternary complex recycling (289, 290). In addition, phosphatases other
than lipid phosphatase PTEN have been shown to regulate mTOR signaling and thus
mRNA translation. For instance, TORC1 inhibition in S. cerevisiae leads to dissociation
of the serine/threonine phosphatase SIT4 from its inhibitor TAP42, which results in
dephosphorylation and activation of the elF2« kinase GCN2 (291). In mammals, inhi-
bition of mTORC1 activates the SIT4 orthologue PP6C, which stimulates GCN2 and
induces elF2a phosphorylation (292).

A number of serine/threonine phosphatases have also been proposed to act up-
stream of mTOR. For example, protein phosphatase 2A (PP2A) inactivates AKT by
dephosphorylating its active site (Thr308 in humans) (293). In turn, the PH domain
leucine-rich repeat protein phosphatases (PHLPP1 and PHLPP2) dephosphorylate AKT
on its hydrophobic motif (Ser473 in humans) (294), whereby the loss of PHLPP activity,
which appears to frequently occur in cancer, results in AKT hyperphosphorylation (295).
Mechanisms whereby phosphatases act downstream of mTOR have also been pro-
posed. It was suggested that mTOR controls phosphorylation of S6Ks and 4E-BPs by
suppressing their dephosphorylation by PP2A. PP2A was shown to associate with S6Ks
and be activated by rapamycin (296). It also appears that 4E-BP1 may be dephospho-
rylated by the serine/threonine phosphatase PPM1G, which in glioblastoma cell lines
leads to translational upregulation of the helix-loop-helix transcriptional modulator Id1
(297, 298). Moreover, attachment of lung fibroblasts to the collagen matrix has been
reported to activate the B1 integrin/Src/PP2A axis, leading to 4E-BP1 degradation and
increased cap-dependent translation (299). In contrast, PP2A-dependent dephos-
phorylation of 4E-BP1 has been proposed to underpin PKCa-mediated suppression
of cap-dependent translation and proliferation of intestinal epithelial cells (300). Finally,
inhibition of protein synthesis by 2-deoxyglucose (2-DG), which acts as a potent
inhibitor of glycolysis, is thought to be at least in part mediated by dephosphorylation
of 4E-BP1 by PP1/PP2A and PPM1 phosphatases (297, 301).

In addition to 4E-BPs and S6Ks, other downstream effectors of mTORC1 implicated
in regulation of protein synthesis have been shown to be controlled by phosphatases.
For example, insulin regulates eEF2 dephosphorylation via PP2A (302). Phosphatases
are also thought to regulate elF4E phosphorylation levels. PP2A, for example, has been
shown to decrease elF4E phosphorylation at Ser209, which occurs both directly and

June 2018 Volume 38 Issue 12 e00070-18

Molecular and Cellular Biology

mcb.asm.org 15


http://mcb.asm.org

Minireview

indirectly via suppression of MNKs. Decreased phosphorylation subsequently impedes
assembly of the elF4F complex (303). In turn, it has been suggested that translation of
immunoglobulin-binding protein 1 (Igbp1), which is a regulatory subunit of PP2A, is
elF4E sensitive (304). Finally, ribosomal proteins, including rpL5 and rpS6, have also
been shown to be targeted by PP1 (305, 306). Collectively, these findings strongly
suggest an important role for phosphatases in the regulation of translation, but future
studies are required to establish the precise molecular mechanisms underpinning the
action of phosphatases toward the translational apparatus, as well as the biological
significance of these phenomena.

CONCLUDING REMARKS

While significant progress has been made toward understanding how signaling
pathways, such as PI3K/mTOR and Ras/MAPK, regulate the phosphorylation of compo-
nents of the translation apparatus, very little is known about how these events regulate
mRNA translation or the translatome. This is particularly important, as these signaling
pathways are comprised of several oncogenes and tumor suppressors, which are often
dysregulated in cancer (58). Notwithstanding the relatively comprehensive understand-
ing of MTOR signaling to the translational apparatus (221, 307), outstanding questions
regarding the mechanisms of selective modulation of the translatome by mTOR still
remain (112). Perhaps the biggest riddle of all is the TOP mRNAs, whose regulation
remains poorly understood despite decades of work since their discovery as rapamycin-
sensitive transcripts (308). Notwithstanding the large body of work surrounding the
regulation of mRNAs with structured 5'UTRs or with extremely short 5'UTRs (reviewed
in reference 221), several questions remain about the mechanisms by which mTOR
regulates their translation. Recent efforts to catalogue mTOR-sensitive transcripts using
ribosome or polysome profiling resulted in conflicting results that are likely explained
by analytical and technical biases (222). Moreover, the lack of reliable UTR databases
reduces the accuracy of experimental findings. Future efforts will have to consider all
these points to improve study design and data analysis. Recent advances in pharma-
cological tools (e.g.,, compounds that specifically inhibit mTOR or elF4F components),
genetic tools (e.g., clustered regularly interspaced short palindromic repeat [CRISPR]/
Cas9-based genome manipulations), and technologies that enable genome-wide mon-
itoring of changes in the translatome (e.g., ribosome profiling/transcriptome sequenc-
ing [RNA-seq]) or the proteome (e.g., quantitative mass spectrometry) will undoubt-
edly help decipher the role of signaling pathways in translation regulation as it
relates to homeostasis and disease.

While mTOR and MAPK pathways, as well as elF2« kinases, play pivotal roles in the
regulation of protein synthesis, several additional signaling pathways have been im-
plicated in the phosphorylation of components of the translational machinery and
auxiliary factors (e.g., PAK2, GSK3, Cdk11, CK1, PKC, and CK2) (126, 127, 232, 309-311).
Notwithstanding the fact that these protein kinases specifically regulate components of
the translation machinery, their physiological role in translational control remains
obscure. Together with the differential expression of ribosomal proteins and rRNA,
these phosphorylation events may participate in the generation of specialized ribo-
somes, which would have a substantial impact on how mRNAs are translated into
functional proteins (reviewed in reference 312). Related to this is the recent demon-
stration that rpS6 phosphorylation has a broad influence on the transcription of genes
involved in the ribosome biogenesis (RiBi) program (149), suggesting that posttrans-
lational modification of a ribosomal protein may facilitate the synthesis of RiBi factors.
While many questions remain, the next few years are anticipated to bring new and
exciting discoveries on the role of signaling pathways in global and specific mRNA
translation. These results are likely to improve understanding of the etiopathology of
many human disorders and diseases that are linked to defective translational control,
such as cancer (34, 206), neurological disorders (313, 314), and aging (315, 316).
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